Climairpatrol.ru

Мир Стройки
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формула прогиба балки на двух опорах

Как рассчитать деревянную балку

В частном домостроении есть 3 вида конструкций, которые необходимо подбирать по расчету. Это фундамент, перекрытие и крыша. Конечно, вы можете сделать это и без расчета, опираясь на свой опыт или из опыт своих друзей и знакомых. Но тогда вы рискуете своей безопасностью или своим «кошельком». Другими словами, конструкции могут не выдержать тех нагрузок, которые на них приходятся, или они возводятся с большой надежностью, чем требуется, и на это идут лишние деньги.

Ниже мы рассмотрим, как можно рассчитать деревянную балку, т.е. подобрать ее оптимальное сечение в зависимости от условий эксплуатации и характеристики материала.

Расчет балок должен происходить в следующей последовательности:

1. Сбор нагрузок на балку.

Сбор нагрузок это та процедура, без которой не обходится ни один расчет. Процедура эта довольно длинная, поэтому она вынесена в отдельную статью, где приведен пример сбора нагрузок на перекрытие и балку.

Для тех же, кому нужно рассчитать балку междуэтажного или чердачного перекрытия и кто не хочет заниматься сбором нагрузок, существует универсальный метод. Он заключается в том, что для междуэтажного перекрытия можно принять расчетную нагрузку равную 400 кг/м2, а для чердачного — 200 кг/м2.

Но иногда эти нагрузки могут быть сильно завышены. Например, когда строится небольшой дачный домик, на втором этаже которого будут располагаться две кровати и шкаф, нагрузку можно взять и 150 кг/м2. Только это исключительно на Ваше усмотрение.

2. Выбор расчетной схемы.

Расчетная схема подбирается в зависимости от способа опирания (жесткая заделка, шарнирное опирание), вида нагрузок (сосредоточенные или распространенные) и количества пролетов.

3. Определение требуемого момента сопротивления.

Это так называемый расчет по первой группе предельных состояний — по несущей способности (прочности и устойчивости). Здесь определяется минимальное допустимое сечение деревянной балки, при котором эксплуатация конструкций будет происходить без риска наступления их полной непригодности к эксплуатации.

Примечание : в расчете используются расчетные нагрузки.

4. Определение максимально допустимого прогиба балки.

Это расчет по второй группе предельных состояний — по деформациям (прогибу и перемещениям). По данному расчету определяется сечение деревянной балки в зависимости о предельного прогиба, при превышении которого будет нарушена нормальная их эксплуатация.

Примечание : в расчет используются нормативные нагрузки.

Теперь конкретнее. Для того, чтобы рассчитать деревянную балку перекрытия, Вы можете воспользоваться специальным калькулятором или примером ниже.

Пример расчета деревянной балки перекрытия.

Расчет выполняется в соответствии со СНиП II-25-80 ( СП 64.13330.2011) «Деревянные конструкции» [1] и применением таблиц [2].

Исходные данные.

Требуется рассчитать балку междуэтажного перекрытия над первым этажом в частном доме.

Материал — дуб 2 сорта.

Срок службы конструкций — от 50 до 100 лет.

Состав балки — цельная порода (не клееная).

Шаг балок — 800 мм;

Длина пролета — 5 м (5 000 мм);

Пропитка антипиренами под давлением — не предусмотрена.

Расчетная нагрузка на перекрытие — 400 кг/м2; на балку — qр = 400·0,8 = 320 кг/м.

Нормативная нагрузка на перекрытие — 400/1,1 = 364 кг/м2; на балку — qн = 364·0,8 = 292 кг/м.

Расчет.

1) Подбор расчетной схемы.

Так как балка опирается на две стены, т.е. она шарнирно оперта и нагружена равномерно-распределенной нагрузкой, то расчетная схема будет выглядеть следующим образом:

2) Расчет по прочности.

Определяем максимальный изгибающий момент для данной расчетной схемы:

Мmax = qp·L 2 /8 = 320·5 2 /8 = 1000 кг·м = 100000 кг·см,

где: qp — расчетная нагрузка на балку;

L — длина пролета.

Определяем требуемый момент сопротивления деревянной балки:

где: R = Rи·mп·mд·mв·mт·γсc = 130·1,3·0,8·1·1·0,9 = 121,68 кг/см 2 — расчетное сопротивление древесины, подбираемое в зависимости от расчетных значений для сосны, ели и лиственницы при влажности 12% согласно СНиП [1] — таблицы 1 [2] и поправочных коэффициентов:

mп = 1,3 — коэффициент перехода для других пород древесины, в данном случае принятый для дуба (таблица 7 [2]).

mд = 0,8 — поправочный коэффициент принимаемый в соответствии с п.5.2. [1], вводится в случае, когда постоянные и временный длительные нагрузки превышают 80% суммарного напряжения от всех нагрузок.

mв = 1 — коэффициент условий работы (таблица 2 [2]).

mт = 1 — температурный коэффициент, принят 1 при условии, что температура помещения не превышает +35 °С.

γсс = 0,9 — коэффициент срока службы древесины, подбирается в зависимости от того, сколько времени вы собираетесь эксплуатировать конструкции (таблица 8 [2]).

γн/о = 1,05 — коэффициент класса ответственности. Принимается по таблице 6 [2] с учетом, что класс ответственности здания I.

В случае глубокой пропитки древесины антипиренами к этим коэффициентам добавился бы еще один: ma = 0.9.

С остальными менее важными коэффициентами вы можете ознакомится в п.5.2 СП 64.13330.2011.

Примечание: перечисленные таблицы вы можете найти здесь.

Определение минимально допустимого сечения балки:

Так как чаще всего деревянные балки перекрытия имеют ширину 5 см, то мы будем находить минимально допустимую высоту балки по следующей формуле:

h = √(6Wтреб/b) = √(6·862,92/5) = 32,2 см.

Формула подобрана из условия Wбалки = b·h 2 /6. Получившийся результат нас не удовлетворяет, так как перекрытие толщиной более 32 см никуда не годится. Поэтому увеличиваем ширину балки до 10 см.

h = √(6Wтреб/b) = √(6·862,92/10) = 22,8 см.

Принятое сечение балки: bxh = 10×25 см.

3) Расчет по прогибу.

Здесь мы находим прогиб балки и сравниваем его с максимально допустимым.

Определяем прогиб принятой балки по формуле соответствующей принятой расчетной схеме:

f = (5·qн·L 4 )/(384·E·J) = (5·2,92·500 4 )/(384·100000·13020,83) = 1,83 см

где: qн = 2,92 кг/cм — нормативная нагрузка на балку;

L = 5 м- длина пролета;

Е = 100000 кг/см2 — модуль упругости. Принимается равным в соответствии с п.5.3 СП 64.13330.2011 вдоль волокон 100000 кг/см2 и 4000 кг/см 2 поперек волокон не взирая на породы при расчете по второй группе предельных состояний. Но справедливости ради нужно отметить, что модуль упругости в зависимости от влажности, наличия пропиток и длительности нагрузок только у сосны может колебаться от 60000 до 110000 кг/см2. Поэтому, если вы хотите перестраховаться, то можете взять минимальный модуль упругости.

J = b·h 3 /12 = 10·25 3 /12 = 13020,83 см 4 — момент инерции для доски прямоугольного сечения.

Определяем максимальный прогиб балки:

fmax = L·1/250 = 500/250 = 2,0 см.

Предельный прогиб определяется по таблице 9 [2], как для междуэтажных перекрытий.

Расчет металлической балки на прогиб: учимся составлять формулы

В качестве примера, возьмем металлическую балку на двух опорах. Запишем для нее формулу для вычисления прогиба, посчитаем его численное значение. И также в конце этой статьи дам ссылки на другие полезные статьи с примерами определения прогибов для различных расчетных схем.

Что такое прогиб балки?

Под действием внешней нагрузки, поперечные сечения балки перемещаются вертикально (вверх или вниз), эти перемещения называются прогибами. Сопромат позволяет нам определить прогиб балки, зная ее геометрические параметры: длину, размеры поперечного сечения. И также нужно знать материал, из которого изготовлена балка (модуль упругости).

Кстати! Помимо вертикальных перемещений, поперечные сечения балки, поворачиваются на определенный угол. И эти величины также можно определить методом начальных параметров.

ν-прогиб сечения C; θ-угол поворота сечения C.

Прогибы балки необходимо рассчитывать, при расчете на жесткость. Расчётные значения прогибов не должны превышать допустимых значений. Если расчетное значение меньше, чем допустимое, то считают, что условие жесткости элемента конструкции соблюдается. Если же нет, то принимаются меры по повышению жесткости. Например, задаются другим материалом, у которого модуль упругости БОЛЬШЕ. Либо же меняют геометрические параметры балки, чаще всего, поперечное сечение. Например, если балка двутаврового профиля №12, не подходит по жесткости, принимают двутавр №14 и делают перерасчет. Если потребуется, повторяют подбор, до того момента пока не найдут тот самый – двутавр.

Метод начальных параметров

Метод начальных параметров, является довольно универсальным и простым методом. Используя этот метод можно записывать формулу для вычисления прогиба и угла поворота любого сечения балки постоянной жесткости (с одинаковым поперечным сечением по длине.)

Под начальными параметрами понимаются уже известные перемещения:

  • в опорах прогибы равны нулю;
  • в жесткой заделке прогиб и угол поворота сечения равен нулю.

Расчет прогибов балки

Посмотрим, как пользоваться методом начальных параметров на примере простой балки, которая загружена всевозможными типами нагрузок, чтобы максимально охватить все тонкости этого метода:

Реакции опор

Для расчета нужно знать все внешние нагрузки, действующие на балку, в том числе и реакции, возникающие в опорах.

Система координат

Далее вводим систему координат, с началом в левой части балки (точка А):

Распределенная нагрузка

Метод начальных параметров, который будем использовать чуть позднее, работает только в том случае, когда распределенная нагрузка доходит до крайнего правого сечения, наиболее удаленного от начала системы координат. Конкретно, в нашем случае, нагрузка обрывается и такая расчетная схема неприемлема для дальнейшего расчета.

Если бы нагрузка была приложена вот таким способом:

То можно было бы сразу приступать к расчету перемещений. Нам же потребуется использовать один хитрый прием – ввести дополнительные нагрузки, одна из которых будет продолжать действующую нагрузку q, другая будет компенсировать это искусственное продолжение. Таким образом, получим эквивалентную расчетную схему, которую уже можно использовать в расчете методом начальных параметров:

Вот, собственно, и все подготовительные этапы, которые нужно сделать перед расчетом.

Приступим непосредственно к самому расчету прогиба балки. Рассмотрим наиболее интересное сечение в середине пролета, очевидно, что это сечение прогнется больше всех и при расчете на жесткость такой балки, рассчитывалось бы именно это сечение. Обзовем его буквой – C:

Относительно системы координат записываем граничные условия. Учитывая способ закрепления балки, фиксируем, что прогибы в точках А и В равны нулю, причем важны расстояния от начала координат до опор:

Читать еще:  Чем лучше утеплить крышу в частном доме

Записываем уравнение метода начальных параметров для сечения C:

Произведение жесткости балки EI и прогиба сечения C будет складываться из произведения EI и прогиба сечения в начале системы координат, то есть сечения A:

Напомню, E – это модуль упругости первого рода, зависящий от материала из которого изготовлена балка, I – это момент инерции, который зависит от формы и размеров поперечного сечения балки. Также учитывается угол поворота поперечного сечения в начале системы координат, причем угол поворота дополнительно умножается на расстояние от рассматриваемого сечения до начала координат:

Учет внешней нагрузки

И, наконец, нужно учесть внешнюю нагрузку, но только ту, которая находится левее рассматриваемого сечения C. Здесь есть несколько особенностей:

  • Сосредоточенные силы и распределенные нагрузки, которые направленны вверх, то есть совпадают с направлением оси y, в уравнении записываются со знаком «плюс». Если они направленны наоборот, соответственно, со знаком «минус»:

  • Моменты, направленные по часовой стрелке – положительные, против часовой стрелки – отрицательные:

  • Все сосредоточенные моменты нужно умножать дробь:

[ Mcdot frac < < x >^ < 2 >>< 2 >]

  • Все сосредоточенные силы нужно умножать дробь:

[ Fcdot frac < < x >^ < 3 >>< 6 >]

  • Начало и конец распределенных нагрузок нужно умножать на дробь:

Формулы прогибов

С учетом всех вышеописанных правил запишем окончательное уравнение для сечения C:

В этом уравнении содержится 2 неизвестные величины – искомый прогиб сечения C и угол поворота сечения A.

Поэтому, чтобы найти прогиб, составим второе уравнение для сечения B, из которого можно определить угол поворота сечения A. Заодно закрепим пройденный материал:

Выражаем угол поворота:

Подставляем это значение в наше первое уравнение и находим искомое перемещение:

Вычисление прогиба

Значение получили в общем виде, так как изначально не задавались тем, какое поперечное сечение имеет рассчитываемая балка. Представим, что металлическая балка имеет двутавровое поперечное сечение №30. Тогда:

Таким образом, такая балка прогнется максимально на 2 см. Знак «минус» указывает на то, что сечение переместится вниз.

Расчёт балки на прогиб и прочность

Скачать, сохранить результат

Выберите способ сохранения

Информация

Балка занимает роль основополагающего элемента в несущей конструкции. Её функция приравнивается к стержню всей конструкции, который прочно закрепили. При строительстве какого-либо сооружения очень важно осуществить грамотный расчет балки на прогиб и исключить допущение ошибки в расчетах. Прежде всего расчет требуется для определения того, на сколько балка деформируется в процессе эксплуатации сооружения. Если при расчете показатель деформации находится в пределах нормы, то можно определить нужные показатели будущей балки (сечение, материал, размер и так далее).

Делая расчет балки на прочность, необходимо четко знать виды материала, из которого изготавливаются балки (сталь, дерево, бетон, алюминий, стекло и медь). Далее нужно обратить внимание на то, что типы нагрузок, как и их схемы также различаются. Так, например, распределенная нагрузка означает, что давление оказывается не на одну точку, а распределено по всей площади балки. Сосредоточенный тип нагрузки характеризует направленность давления на один небольшой участок (точку) балки.

Вместе с типами, существуют четыре схемы нагрузок:

  • Шарнир-Шарнир
  • Заделка-Шарнир
  • Заделка-Заделка»
  • Свободный конец

Наш онлайн калькулятор позволяет сделать расчет, комбинируя все виды балок, типы и схемы нагрузок, при этом абсолютно исключив вероятность допущения ошибки в процессе расчета. Обычно рассчитывают деревянные балки, а также металлические. В процессе вычисления показателя определяется сумма сил, воздействующих на балку, которые направлены перпендикулярно конструкции. Расчет деревянной балки на прогиб осуществляется с учетом материала, т.е. учитывают вид древесины, её гибкость и многие другие параметры, также важно учесть форму сечения балки и нагрузка какого вида оказывается на балку. Сравнивая с расчетом балки из древесины, расчет металлической балки на прогиб существенно отличается, поскольку важное внимание уделяют виду соединения: электросварка, заклепки, болты и другие виды соединений.

Все перечисленные выше нюансы позволяют понять, что расчет балки на прогиб — крайне ответственный этап в процессе стройки какого-либо объекта. От него зависит надежность, долговечность и целостность всей конструкции. Наш калькулятор позволит Вам быстро и безошибочно провести предельно точный расчет.

Какие преимущества даёт наш калькулятор?

  • экономия времени;
  • исключение допущения ошибки;
  • предельная точность в расчете;
  • приятный и понятный интерфейс;
  • дополнительный справочный материал.

Таким образом, созданный нами онлайн калькулятор является незаменимым инструментом в процессе работы специалиста, которому необходимо осуществить расчет балки или любого другого важного показателя.

Расчет балки на прогиб

Процесс проектирования современных строений и построек регулируется огромным количеством различных строительных норм и правил. В большинстве случаев нормы требуют обеспечения определенных характеристик, например, деформации или прогиба балок плит перекрытия под статической или динамической нагрузкой. Например, СНиП № 2.09.03-85 определяет для опор и эстакад прогиб балки не более чем в 1/150 длины пролета. Для чердачных перекрытий этот показатель составляет уже 1/200, а для межэтажных балок и того меньше – 1/250. Поэтому одним из обязательных этапов проектирования является выполнение расчета балки на прогиб.

Способы выполнить расчет и проверку на прогиб

Причина, по которой СНиПы устанавливают столь драконовские ограничения, проста и очевидна. Чем меньше деформация, тем больше запас прочности и гибкости конструкции. Для прогиба менее 0,5% несущий элемент, балка или плита все еще сохраняет упругие свойства, что гарантирует нормальное перераспределение усилий и сохранение целостности всей конструкции. С увеличением прогиба каркас здания прогибается, сопротивляется, но стоит, с выходом за пределы допустимой величины происходит разрыв связей, и конструкция лавинообразно теряет жесткость и несущую способность.

Просчитать прогиб конструкции можно несколькими способами:

  • Воспользоваться программным онлайн-калькулятором, в котором «зашиты» стандартные условия, и не более того;
  • Использовать готовые справочные данные для различных типов и видов балок, для различных опор схем нагрузок. Нужно только правильно идентифицировать тип и размер балки и определить искомый прогиб;
  • Посчитать допустимый прогиб руками и своей головой, большинство проектировщиков так и делают, в то время как контролирующие архитектурные и строительные инспекции предпочитают второй способ расчета.

Измерив, насколько просела балка потолочного перекрытия, можно с 99% уверенностью определить, находится ли конструкция в аварийном состоянии или нет.

Методика выполнения расчета на прогиб

Прежде чем приступать к расчету, нужно будет вспомнить некоторые зависимости из теории сопротивления материалов и составить расчетную схему. В зависимости от того, насколько правильно выполнена схема и учтены условия нагружения, будет зависеть точность и правильность расчета.

Используем простейшую модель нагруженной балки, изображенной на схеме. Простейшей аналогией балки может быть деревянная линейка, фото.

В нашем случае балка:

  1. Имеет прямоугольное сечение S=b*h , длина опирающейся части составляет L ;
  2. Линейка нагружена силой Q , проходящей через центр тяжести изгибаемой плоскости, в результате чего концы поворачиваются на небольшой угол θ , с прогибом относительно начального горизонтального положения, равным f ;
  3. Концы балки опираются шарнирно и свободно на неподвижных опорах, соответственно, не возникает горизонтальной составляющей реакции, и концы линейки могут перемещаться в произвольном направлении.

Для определения деформации тела под нагрузкой используют формулу модуля упругости, который определяется по соотношению Е=R/Δ , где Е – справочная величина, R — усилие, Δ — величина деформации тела.

Вычисляем моменты инерции и сил

Для нашего случая зависимость будет выглядеть так: Δ = Q/(S·Е) . Для распределенной вдоль балки нагрузки q формула будет выглядеть так: Δ = q·h/(S·Е) .

Далее следует наиболее принципиальный момент. Приведенная схема Юнга показывает прогиб балки или деформацию линейки так, если бы ее раздавливали под мощным прессом. В нашем случае балку изгибают, а значит, на концах линейки, относительно центра тяжести, приложены два изгибающих момента с разным знаком. Эпюра нагружения такой балки приведена ниже.

Чтобы преобразовать зависимость Юнга для изгибающего момента, необходимо обе части равенства умножить на плечо L. Получаем Δ*L = Q·L/(b·h·Е) .

Если представить, что одна из опор жестко закреплена, а на второй будет приложен эквивалентный уравновешивающий момент сил Mmax = q*L*2/8 , соответственно, величина деформации балки будет выражаться зависимостью Δх = M·х/((h/3)·b·(h/2)·Е) . Величину b·h 2 /6 называют моментом инерции и обозначают W . В итоге получается Δх = M·х/(W·Е) основополагающая формула расчета балки на изгиб W=M/E через момент инерции и изгибающий момент.

Чтобы точно выполнить расчет прогиба, потребуется знать изгибающий момент и момент инерции. Величину первого можно посчитать, но конкретная формула для расчета балки на прогиб будет зависеть от условий контакта с опорами, на которых находится балка, и способа нагружения, соответственно для распределенной или концентрированной нагрузки. Изгибающий момент от распределенной нагрузки считается по формуле Mmax = q*L 2 /8. Приведенные формулы справедливы только для распределенной нагрузки. Для случая, когда давление на балку сконцентрировано в определенной точке и зачастую не совпадает с осью симметрии, формулу для расчета прогиба приходится выводить с помощью интегрального исчисления.

Момент инерции можно представить, как эквивалент сопротивления балки изгибающей нагрузке. Величину момента инерции для простой прямоугольной балки можно посчитать по несложной формуле W=b*h 3 /12, где b и h – размеры сечения балки.

Из формулы видно, что одна и та же линейка или доска прямоугольного сечения может иметь совершенно разный момент инерции и величину прогиба, если положить ее на опоры традиционным способом или поставить на ребро. Недаром практически все элементы стропильной системы крыши изготавливаются не из бруса 100х150, а из доски 50х150.

Реальные сечения строительных конструкций могут иметь самые разные профили, от квадрата, круга до сложных двутавровых или швеллерных форм. При этом определение момента инерции и величины прогиба вручную, «на бумажке», для таких случаев становится нетривиальной задачей для непрофессионального строителя.

Формулы для практического использования

На практике чаще всего стоит обратная задача – определить запас прочности перекрытий или стен для конкретного случая по известной величине прогиба. В строительном деле очень сложно дать оценку запасу прочности иными, неразрушающими методами. Нередко по величине прогиба требуется выполнить расчет, оценить запас прочности здания и общее состояние несущих конструкций. Мало того, по выполненным измерениям определяют, является деформация допустимой, согласно расчету, или здание находится в аварийном состоянии.

Читать еще:  Отделка фасада панелями под камень

Например, если вы намерены покупать готовое здание, простоявшее достаточно долго на проблемном грунте, нелишним будет проверить состояние перекрытия по имеющемуся прогибу. Зная предельно допустимую норму прогиба и длину балки, можно безо всякого расчета оценить, насколько критическим является состояние строения.

Строительная инспекция при оценке прогиба и оценке несущей способности перекрытия идет более сложным путем:

  • Первоначально измеряется геометрия плиты или балки, фиксируется величина прогиба;
  • По измеренным параметрам определяется сортамент балки, далее по справочнику выбирается формула момента инерции;
  • По прогибу и моменту инерции определяют момент силы, после чего, зная материал, можно выполнить расчет реальных напряжений в металлической, бетонной или деревянной балке.

Вопрос – почему так сложно, если прогиб можно получить, используя для расчета формулу для простой балки на шарнирных опорах f=5/24*R*L 2 /(E*h) под распределенным усилием. Достаточно знать длину пролета L, высоту профиля, расчетное сопротивление R и модуль упругости Е для конкретного материала перекрытия.

Ответ прост — необходимо непросто рассчитать, но и сохранить на бумаге ход выполнения проверочного расчета, чтобы сделанные выводы о состоянии перекрытия можно было проверить и перепроверить по всем этапам проверки.

Заключение

Аналогичным образом поступает большинство разработчиков и проектантов серьезных построек. Программа – это хорошо, она помогает очень быстро выполнить расчет прогиба и основных параметров нагружения перекрытия, но важно также предоставить заказчику документальное подтверждение полученных результатов в виде конкретных последовательных расчетов на бумаге.

Расчет балки на прогиб — формулы, параметры и примеры решения

Расчет балки на прогиб нужно проводить практически для любой конструкции, чтобы проверить ее надежность и прочность. Под влиянием внешних, внутренних факторов, природных явлений балка подвержена деформации.

Балку сравнивают со стержнем, закрепленным на опорах. Чем больше опор, тем сложнее провести расчет самостоятельно. Основная нагрузка считается путем сложения сил, перпендикулярно направленных к сечению.

Данный расчет – основы сопромата, помогает определить наивысшую деформацию. Значения показателей должны входить в рамки допустимых величин.

Виды балок

При возведении зданий используется балки разных конфигураций, размеров, профиля, характера сечения. Их изготавливают из металла и дерева. Для любого вида используемого материала нужен индивидуальный расчёт изгиба.

Деревянные — их используют в основном при строительстве индивидуальных построек. Они применяются при возведении полов, потолков, несущих перекрытий. Дерево – капризный материал и подвержено деформации. Для определения максимального изгиба, существенны такие параметры: используемый профиль, размер, нагрузка, характер поперечного сечения.

Металлические — такие балки изготавливают из сплава металлов и сечение у них сложное. Поэтому особое внимание уделяется жесткости, а также прочности соединений. Балки из металла применяются в возведении многоэтажек, сооружений, требующих высокой прочности.

Прочность и жесткость балки

При проектировании следует учесть изгиб балок, чтобы конструкция была надежная, качественная, прочная и практичная.

На эти параметры влияют следующие факторы:

величина наружных нагрузок, их положение;

параметры, характер, нахождение поперечного сечения;

число опор, метод их закрепления.

Выделяют 2 метода исчисления: простой – применяется увеличительный коэффициент, и точный – дополнительно включает пограничные подсчеты.

Построение эпюр балки

Эпюра распределения величины нагрузки на объект:

Расчет на жесткость

В формуле обозначены:

M – max момент, возникающий в брусе;

Wn,min – момент сопротивления сечения (табличный показатель);

Ry – сопротивление на изгиб (расчётный показатель);

γc – показатель условий труда (табличный показатель).

Такой расчет не трудоемок, но для более верного значения требуется следующее:

рабочий план объекта;

определение характеристик балки, характер сечения;

определение max нагрузки, воздействующей на брус;

оценка точки max прогиба;

проверка прочности max изгибающего момента.

Расчет моментов инерции и сопротивления сечения

J – момент инерции сечения;

W – момент сопротивления.

Для определения данных параметров необходимо учитывать сечение по грани разреза. Если момент инерции возрастает, величина жесткости также возрастает.

Нахождение максимальной нагрузки и прогиба

Формула для вычисления:

q – нагрузка равномерно-распределенная;

E – гибкость (табличный показатель);

I – момент инерции сечения.

Нагрузки учитываются статические и периодические.

Расчет на прогиб и его особенности

Он необходим для всех перекрытий при высоких эксплуатационных нагрузках.

При применении соответствующих коэффициентов, придерживаются следующего:

балка, держащаяся на одной жесткой и одной шарнирной опоре, подвергающаяся воздействию сосредоточенной нагрузки;

балка, держащаяся на жесткой и шарнирной опоре, подвергающаяся воздействию распределенной нагрузки;

нагрузка консольного типа;

воздействие комплексной нагрузки.

Пример расчет балки на прогиб

Рассмотрим задачу из курса сопромата.

Дано: балка четырехугольного сечения 20 на 30 см; поперечная сила Q = 19 кН; изгибающий момент М = 28 кНм.

Необходимо рассчитать напряжение: нормальное и в пределе К, отдаленной на 11 см от оси, узнать прочность бруса из дерева, при [σ] = 10 МПа, [τ] = 3 МПа.

Чтобы узнать σ(К), τ(К), σmax, τmax
определяем значение осевого момента инерции общего сечения IН.О., осевого момента сопротивления WН.О., статического момента отсеченного ряда и статического момента середины сечения Smax:

Из этого следует:

Определение прочности по нормальному напряжению:

Определение прочности по касательному напряжению:

При проектировании конструкций важно соблюдать все физико-механические вычисления на прочность. Удобно и качественно произвести расчеты может онлайн, что существенно сократит временные сроки.

Калькулятор выполняет подробный подсчет на основе формул, эпюр усилий, подбирает номер сечения металлической балки из прокатных профильных, двутавровых материалов, а также из металлических труб.

Расчет балки на прогиб — формулы, параметры и примеры решения

Расчет балки на прогиб нужно проводить практически для любой конструкции, чтобы проверить ее надежность и прочность. Под влиянием внешних, внутренних факторов, природных явлений балка подвержена деформации.

Балку сравнивают со стержнем, закрепленным на опорах. Чем больше опор, тем сложнее провести расчет самостоятельно. Основная нагрузка считается путем сложения сил, перпендикулярно направленных к сечению.

Данный расчет – основы сопромата, помогает определить наивысшую деформацию. Значения показателей должны входить в рамки допустимых величин.

Виды балок

При возведении зданий используется балки разных конфигураций, размеров, профиля, характера сечения. Их изготавливают из металла и дерева. Для любого вида используемого материала нужен индивидуальный расчёт изгиба.

Деревянные — их используют в основном при строительстве индивидуальных построек. Они применяются при возведении полов, потолков, несущих перекрытий. Дерево – капризный материал и подвержено деформации. Для определения максимального изгиба, существенны такие параметры: используемый профиль, размер, нагрузка, характер поперечного сечения.

Металлические — такие балки изготавливают из сплава металлов и сечение у них сложное. Поэтому особое внимание уделяется жесткости, а также прочности соединений. Балки из металла применяются в возведении многоэтажек, сооружений, требующих высокой прочности.

Прочность и жесткость балки

При проектировании следует учесть изгиб балок, чтобы конструкция была надежная, качественная, прочная и практичная.

На эти параметры влияют следующие факторы:

величина наружных нагрузок, их положение;

параметры, характер, нахождение поперечного сечения;

число опор, метод их закрепления.

Выделяют 2 метода исчисления: простой – применяется увеличительный коэффициент, и точный – дополнительно включает пограничные подсчеты.

Построение эпюр балки

Эпюра распределения величины нагрузки на объект:

Расчет на жесткость

В формуле обозначены:

M – max момент, возникающий в брусе;

Wn,min – момент сопротивления сечения (табличный показатель);

Ry – сопротивление на изгиб (расчётный показатель);

γc – показатель условий труда (табличный показатель).

Такой расчет не трудоемок, но для более верного значения требуется следующее:

рабочий план объекта;

определение характеристик балки, характер сечения;

определение max нагрузки, воздействующей на брус;

оценка точки max прогиба;

проверка прочности max изгибающего момента.

Расчет моментов инерции и сопротивления сечения

J – момент инерции сечения;

W – момент сопротивления.

Для определения данных параметров необходимо учитывать сечение по грани разреза. Если момент инерции возрастает, величина жесткости также возрастает.

Нахождение максимальной нагрузки и прогиба

Формула для вычисления:

q – нагрузка равномерно-распределенная;

E – гибкость (табличный показатель);

I – момент инерции сечения.

Нагрузки учитываются статические и периодические.

Расчет на прогиб и его особенности

Он необходим для всех перекрытий при высоких эксплуатационных нагрузках.

При применении соответствующих коэффициентов, придерживаются следующего:

балка, держащаяся на одной жесткой и одной шарнирной опоре, подвергающаяся воздействию сосредоточенной нагрузки;

балка, держащаяся на жесткой и шарнирной опоре, подвергающаяся воздействию распределенной нагрузки;

нагрузка консольного типа;

воздействие комплексной нагрузки.

Пример расчет балки на прогиб

Рассмотрим задачу из курса сопромата.

Дано: балка четырехугольного сечения 20 на 30 см; поперечная сила Q = 19 кН; изгибающий момент М = 28 кНм.

Необходимо рассчитать напряжение: нормальное и в пределе К, отдаленной на 11 см от оси, узнать прочность бруса из дерева, при [σ] = 10 МПа, [τ] = 3 МПа.

Чтобы узнать σ(К), τ(К), σmax, τmax определяем значение осевого момента инерции общего сечения IН.О., осевого момента сопротивления WН.О., статического момента отсеченного ряда и статического момента середины сечения Smax:

Из этого следует:

Определение прочности по нормальному напряжению:

Определение прочности по касательному напряжению:

При проектировании конструкций важно соблюдать все физико-механические вычисления на прочность. Удобно и качественно произвести расчеты может онлайн, что существенно сократит временные сроки.

Калькулятор выполняет подробный подсчет на основе формул, эпюр усилий, подбирает номер сечения металлической балки из прокатных профильных, двутавровых материалов, а также из металлических труб.

Расчет деревянных балок перекрытия – Калькулятор онлайн

Онлайн-калькулятор для расчета балки на прогиб/изгиб и прочность. Расчет деревянных балок перекрытия на прогиб. Подбор сечения балки.

Балка – это элемент строительных несущих конструкций, который широко используется для возведения межэтажных перекрытий. Перекрытия, в свою очередь, предназначены для разделения по высоте смежных помещений, а также принятия статических и динамических нагрузок от находящихся на нем предметов интерьера, оборудования, людей и т.д.

Читать еще:  Как убрать обратную тягу в дымоходе?

В большинстве случаев, для частного домостроения используются деревянные балки из цельного бруса, отесанного бревна, клееных досок или шпона. Эти материалы, при правильном подборе параметров, способны обеспечить необходимую прочность и жесткость основания, что является залогом долговечности постройки.

Мы предлагаем вам выполнить онлайн расчет балки перекрытия на прочность и изгиб, подобрать её сечение и определить шаг между балками. Также вы получите набор персональных чертежей и 3D-модель для лучшего восприятия возводимой конструкции. Программа учитывает СНиП II-25-80 (СП 64.13330.2011) и другие справочные источники.

Точный и грамотный расчет деревянных балок в сервисе KALK.PRO, позволяет узнать все необходимые параметры для сооружения крепкого перекрытия. Все вычисления бесплатны, есть возможность сохранения рассчитанных данных в формате PDF, плюс доступны схемы и 3D-модель.

Инструкция к калькулятору

Наш сервис предоставляет на выбор два вида расчета однопролетных балок перекрытия. В первом случае, вам предлагается рассчитать сечение балки при известном шаге между ними, во втором случае, вы можете узнать рекомендуемое значение шага между балками при выбранных характеристиках сечения. Разберем работу калькулятора на примере, когда ваша задача заключается в нахождении сечения балки.

Для расчета вам понадобится знать ряд обязательных начальных параметров. В первую очередь это характеристики самой балки:

  • ширина сечения (толщина), мм;
  • длина пролета балки (на изображении BLN), м;
  • вид древесины (сосна, ель, лиственница…);
  • класс древесины (1/К26, 2/К24, 3/К16);
  • пропитка (есть, нет).

В случае, если вы не знаете толщину предполагаемой балки, в первом блоке следует выбрать пункт «Известно соотношение высоты сечения балки к её ширине — h/b» и указать значение 1,4. Эта наиболее оптимальная величина, которая получена эмпирическим методом и указывается во многих справочниках.

Затем нужно указать условия, в которых будет эксплуатироваться перекрытие:

  • температурный режим ( 50 °C);
  • влажностный режим;
  • присутствуют постоянные повышенные нагрузки или нет.

После этого, сконфигурируйте конструкцию и заполните поля калькулятора:

  • длина стены дома по внутренней стороне, м;
  • шаг между балками, см;
  • полная длина балки (на изображении BFL), м;
  • нагрузка на балку, кг/м 2 ;
  • предельный прогиб в долях пролета.

При необходимости впишите стоимость одного кубометра древесины, для того чтобы узнать общую стоимость всех пиломатериалов.

Также, обратим внимание, что обычно шаг балки не делают меньше 0,3 м, так как это нецелесообразно с экономической точки зрения и больше 1,2 м, так как возможен прогиб чернового пола со всеми вытекающими последствиями.

Когда вы нажмете кнопку «Рассчитать», сервис произведет расчет балки онлайн и выведет на экране рекомендуемые значения сечения подобранной балки.

Кроме того, в блоке «Результаты расчета» вы сможете узнать:

  • параметры балки при расчете на прочность;
  • параметры балки при расчете на прогиб;
  • максимальный прогиб балки, см.

Квалифицированный расчет перекрытия по деревянным балкам — залог долговечности сооружения и безопасность для вашей семьи.

Расчет балок перекрытия

Самостоятельный расчет деревянной балки перекрытия – это долгое и нудное занятие, которое обязывает вас знать основы инженерных дисциплин и сопромата. Без определенных навыков и знаний, вручную подобрать материал, рассчитать необходимое сечение или шаг балки – не просто тяжело, а порой и невозможно. Тем не менее, мы попытаемся вам рассказать об основных характеристиках, которые нужны для вычислений и по какому алгоритму работает наш калькулятор.

Виды балок

В настоящее время, деревянные балки, используемые для изготовления перекрытий, можно разделить на два принципиально разных вида:

  • цельные;
  • клееные.

Исходя из названия становится понятно, что в первом случае, это будет цельный кусок древесины определенного типа сечения (чаще всего это брус на 2 или 4 канта), во втором случае, это клееная балка из досок или шпона LVL.

Несмотря на низкую стоимость, по ряду объективных причин, деревянные балки из цельной древесины в последнее время используются все реже. Качественные показатели этого материала значительно уступают клееному дереву: низкий модуль упругости способствует появлению больших прогибов в середине пролета (особенно это становится заметно при расстоянии между несущими стенами более 4 метров), при высыхании на балках появляются продольные трещины, которые приводят к уменьшению момента инерции прогиба, отсутствие пропитки подвергает древесину воздействиям вредителей и гниения.

Благодаря современным технологиям, клееные балки не имеют подобных недостатков. Их структура однородна и волокна ориентированы по всем направлениям – повышается общая прочность и модуль упругости материала, он получает защиту от растрескивания, а специальная пропитка обеспечивает повышенный уровень пожаробезопасности и устойчивости к влаге. Эти балки разрешено использовать при проемах в 6-9 м и можно рассматривать, как полноценный аналог железному перекрытию.

Прогиб (инженерный) — Deflection (engineering)

В технике , отклонение является степень , в которой структурный элемент смещается под нагрузкой (из — за его деформации ). Это может относиться к углу или расстоянию.

Расстояние прогиба элемента под нагрузкой можно рассчитать путем интегрирования функции, которая математически описывает наклон отклоненной формы элемента под этой нагрузкой.

Существуют стандартные формулы для прогиба общих конфигураций балок и загружений в отдельных местах. В противном случае такие методы, как виртуальная работа , прямой интеграции , метод Кастилиано , метод Маколея или метод прямой жесткости используются. Прогиб элементов балки обычно рассчитывается на основе уравнения Эйлера – Бернулли, в то время как прогиб элемента пластины или оболочки рассчитывается с использованием теории пластин или оболочек .

Пример использования отклонения в этом контексте — строительство. Архитекторы и инженеры подбирают материалы для различных применений.

СОДЕРЖАНИЕ

  • 1 Прогиб балки при различных нагрузках и опорах
    • 1.1 Консольные балки
      • 1.1.1 Консольные балки с торцевыми нагрузками
      • 1.1.2 Равномерно нагруженные консольные балки
    • 1.2 Балки с простой опорой
      • 1.2.1 Простые балки с центральной нагрузкой
      • 1.2.2 Простые балки со смещенной центральной нагрузкой
      • 1.2.3 Равномерно нагруженные простые балки
    • 1.3 Изменение длины
  • 2 единицы
    • 2.1 Международная система (SI)
    • 2.2 Обычные единицы США (США)
    • 2.3 Другое
  • 3 структурный прогиб
  • 4 См. Также
  • 5 ссылки
  • 6 Внешние ссылки

Прогиб балки при различных нагрузках и опорах

Балки могут сильно различаться по своей геометрии и составу. Например, балка может быть прямой или изогнутой. Он может иметь постоянное поперечное сечение или может сужаться. Он может быть полностью изготовлен из одного и того же материала (однородный) или состоять из разных материалов (композит). Некоторые из этих вещей затрудняют анализ, но многие инженерные приложения связаны с не такими сложными случаями. Анализ упрощается, если:

  • Луч изначально прямой, а любой конус небольшой.
  • Балка испытывает только линейную упругую деформацию.
  • Балка тонкая (отношение длины к высоте больше 10).
  • Учитываются только небольшие прогибы (максимальный прогиб менее 1/10 пролета ).

В этом случае уравнение, определяющее прогиб балки ( ), можно аппроксимировать следующим образом: ш < displaystyle w>

d 2 ш ( Икс ) d Икс 2 знак равно M ( Икс ) E ( Икс ) я ( Икс ) < Displaystyle < cfrac < mathrm ^ <2>w (x)> < mathrm x ^ <2>>> = < frac >>

где вторая производная от его отклоненной формы по отношению к интерпретируется как его кривизна, является модулем Юнга , является моментом инерции площади поперечного сечения и является внутренним изгибающим моментом в балке. Икс < displaystyle x> E < displaystyle E> я < displaystyle I> M < displaystyle M>

Если, кроме того, балка не имеет конической формы и однородна , и на нее действует распределенная нагрузка , приведенное выше выражение можно записать как : q < displaystyle q>

E я d 4 ш ( Икс ) d Икс 4 знак равно q ( Икс ) < displaystyle EI

< cfrac < mathrm ^ <4>w (x)> < mathrm x ^ <4>>> = q (x)>

Это уравнение может быть решено для различных нагрузок и граничных условий. Ниже показан ряд простых примеров. Выраженные формулы являются приближениями, разработанными для длинных, тонких, однородных призматических балок с небольшими прогибами и линейными упругими свойствами. При этих ограничениях приближения должны давать результаты в пределах 5% от фактического прогиба.

Консольные балки

Один конец консольных балок закреплен, поэтому наклон и прогиб на этом конце должны быть нулевыми.

Универсальное уравнение оси изогнутой балки, вычисление прогибов и углов поворота поперечных сечений

Определение прогибов и углов поворота поперечного сечения балки определяют с помощью универсального уравнения изогнутой оси балки (универсального уравнения упругой линии балки)

Формула (закон изменения) прогиба балки в сечении с координатой z и угол поворота сечения (рис. 7.15):

a и b – абсциссы точек приложения сосредоточенного момента M и сосредоточенной силы P, соответственно; c и d – координаты начала и конца участка, нагруженного распределенной нагрузкой.

В формулы входят только внешние усилия, которые расположены левее сечения, в котором определяются перемещения балки.

Если какая-нибудь нагрузка имеет противоположное указанному на рисунке 7.15 направление, то у соответствующих слагаемых в формулах прогибов и углов поворота сечений следует поменять знак на противоположный.

Прогиб и угол поворота балки в начале координат (начальные параметры) определяются из условий закрепления балки.

Уравнение упругой линии балки на примере

Определим прогиб балки на консоли при м, то есть . Запишем универсальное уравнение упругой линии балки :

Прогиб балки в начале координат (на левой шарнирной опоре), равен нулю: .

Для определения угла поворота в начале координат необходимо составить дополнительное условие: прогиб на правой опоре равен нулю.

,

.

Прогиб консоли при z=6м:

Знак «минус» говорит: прогиб балки на консоли происходит вниз. Число, стоящее в числителе, измеряется в килоньютонах на метр в кубе (кН·м3).

Примерный вид упругой линии балки показан на рис. 7.16.

Упругая линия балки должна быть согласована с эпюрой изгибающих моментов по дифференциальным зависимостям. Точка перегиба находится под сечением балки, в котором изгибающий момент равен нулю, что следует из закона Гука при изгибе.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector