Climairpatrol.ru

Мир Стройки
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплопроводность пенопласта 50 мм в сравнении таблица

Сравнение утеплителей. Таблица теплопроводности

Предисловие. На современном рынке имеется просто огромный выбор материалов, которые отличаются по цене и другим характеристикам. Попробуем сделать сравнение утеплителей по теплопроводности и разобраться в этом разнообразии, чтобы принять взвешенное решение в пользу определенного утеплителя. Рассмотрим, какие параметры важнее при выборе – теплопроводность или другие характеристики.

Основные характеристики утеплителей

Предоставим для начала характеристики наиболее популярных теплоизоляционных материалов, на которые в первую очередь стоит обратить свое внимание при выборе. Сравнение утеплителей по теплопроводности следует производить только на основе назначения материалов и условий в помещении (влажность, наличие открытого огня и т.д.). Мы расположили далее в порядке значимости основные характеристики утеплителей.

Сравнение строительных материалов

Теплопроводность. Чем ниже данный показатель, тем меньше требуется слой теплоизоляции, а значит, сократятся и расходы на утепление.

Влагопроницаемость. Меньшая проницаемость материала парами влаги снижает при эксплуатации негативное воздействие на утеплитель.

Пожаробезопасность. Теплоизоляция не должна гореть и выделять ядовитые газы, особенно при утеплении котельной или печной трубы.

Долговечность. Чем больше срок эксплуатации, тем дешевле он вам обойдется при эксплуатации, так как не потребует частой замены.

Экологичность. Материал должен быть безопасным для человека и окружающей природы.

Сравнение утеплителей по теплопроводности

Экономичность. Материал должен быть доступным для широкого круга потребителей и иметь оптимальное соотношение по цене/качеству.

Простота монтажа. Данное свойство для теплоизоляционного материала весьма важно для тех, кто желает самостоятельно делать ремонт.

Толщина и вес материала. Чем будет тоньше и легче утеплитель, тем меньше будет утяжеляться конструкция при монтаже теплоизоляции.

Звукоизоляция. Чем выше показатель звукоизоляции материала, тем лучше будет защита в жилом помещении от постороннего шума с улицы.

Сравнение утеплителей по теплопроводности

Пенополистирол (пенопласт)

Плиты пенополистирола (пенопласта)

Это самый популярный теплоизоляционный материал в России, благодаря своей низкой теплопроводности, невысокой стоимости и легкости монтажа. Пенопласт изготавливается в плитах толщиной от 20 до 150 мм путем вспенивания полистирола и состоит на 99% из воздуха. Материал имеет различную плотность, имеет низкую теплопроводность и устойчив к влажности.

Благодаря своей низкой стоимости пенополистирол имеет большую востребованность среди компаний и частных застройщиков для утепления различных помещений. Но материал достаточно хрупкий и быстро воспламеняется, выделяя токсичные вещества при горении. Из-за этого пенопласт использовать предпочтительнее в нежилых помещениях и при теплоизоляции не нагружаемых конструкций — утепление фасада под штукатурку, стен подвалов и т.д.

Экструдированный пенополистирол

Пеноплэкс (экструдированный пенополистирол)

Экструзия (техноплэкс, пеноплэкс и т.д.) не подвергается воздействию влаги и гниению. Это очень прочный и удобный в использовании материал, который легко режется ножом на нужные размеры. Низкое водопоглощение обеспечивает при высокой влажности минимальное изменение свойств, плиты имеют высокую плотность и сопротивляемость сжатию. Экструдированный пенополистирол пожаробезопасен, долговечен и прост в применении.

Все эти характеристики, наряду с низкой теплопроводностью в сравнении с прочими утеплителями делает плиты техноплэкса, URSA XPS или пеноплэкса идеальным материалом для утепления ленточных фундаментов домов и отмосток. По заверениям производителей лист экструзии толщиной в 50 миллиметров, заменяет по теплопроводности 60 мм пеноблока, при этом материал не пропускает влагу и можно обойтись без дополнительной гидроизоляции.

Минеральная вата

Плиты минеральной ваты Изовер в упаковке

Минвата (например, Изовер, URSA, Техноруф и т.д.) производится из натуральных природных материалов – шлака, горных пород и доломита по специальной технологии. Минеральная вата имеет низкую теплопроводность и абсолютно пожаробезопасна. Выпускается материал в плитах и рулонах различной жесткости. Для горизонтальных плоскостей используются менее плотные маты, для вертикальных конструкций используют жесткие и полужесткие плиты.

Однако, одним из существенных недостатков данного утеплителя, как и базальтовой ваты является низкая влагостойкость, что требует при монтаже минваты устройства дополнительной влаго- и пароизоляции. Специалисты не рекомендуют использовать минеральная вату для утепления влажных помещений – подвалов домов и погребов, для теплоизоляции парилки изнутри в банях и предбанников. Но и здесь ее можно использовать при должной гидроизоляции.

Базальтовая вата

Плиты базальтовой ваты Роквул в упаковке

Данный материал производится расплавлением базальтовых горных пород и раздуве расплавленной массы с добавлением различных компонентов для получения волокнистой структуры с водоотталкивающими свойствами. Материал не воспламеняется, безопасен для здоровья человека, имеет хорошие показатели по теплоизоляции и звукоизоляции помещений. Используется, как для внутренней, так и для наружной теплоизоляции.

При монтаже базальтовой ваты следует использовать средства защиты (перчатки, респиратор и очки) для защиты слизистых оболочек от микрочастиц ваты. Наиболее известная в России марка базальтовой ваты – это материалы под маркой Rockwool. При эксплуатации плиты теплоизоляции не уплотняются и не слеживаются, а значит, прекрасные свойства низкой теплопроводности базальтовой ваты со временем остаются неизменными.

Пенофол, изолон (вспененный полиэтилен)

Пенофол и изолон – это рулонные утеплители толщиной от 2 до 10 мм, состоящие из вспененного полиэтилена. Материал также выпускается со слоем фольги с одной стороны для создания отражающего эффекта. Утеплитель имеет толщину в несколько раз тоньше представленных ранее утеплителей, но при этом сохраняет и отражает до 97% тепловой энергии. Вспененный полиэтилен имеет длительный срок эксплуатации и экологически безопасен.

Изолон и фольгированный пенофол – легкий, тонкий и очень удобный в работе теплоизоляционный материал. Используют рулонный утеплитель для теплоизоляции влажных помещений, например, при утеплении балконов и лоджий в квартирах. Также применение данного утеплителя поможет вам сберечь полезную площадь в помещении, при утеплении внутри. Подробнее об этих материалах читайте в разделе «Органическая теплоизоляция».

Сравнение утеплителей. Таблица теплопроводности

Сравнение пеноблока, минваты и пенопласта по теплопроводности

Представленная выше таблица сравнения теплоизоляции по теплопроводности дает полную картину, о том, какой лучше всего использовать материал. Остается лишь сравнить данные таблицы теплопроводности со стоимостью теплоизоляции у поставщиков. При этом следует точно рассчитать необходимую толщину утепления при использовании различных материалов, чтобы подобрать необходимое количество материала.

Видео. Сравнение утеплителей для труб

Теплопроводность пенопласта 50 мм в сравнении с другими теплоизоляторами

Немного об утеплении. Рассмотрим теплопроводность пенопласта 50 мм в сравнении. Таблицу целиком приводить не будем, озвучим лишь некоторые основные моменты.

Почему теплопроводность пенопласта целесообразно рассматривать именно в сравнении с другими видами теплоизоляторов? И почему для анализа выбрано изделие толщиной 50 мм?

На второй вопрос ответ прост. Листы этой толщины пользуются наибольшей популярностью в малоэтажном строительстве. Причем идет продукт на утепление как внутренних, так и наружных стен. Следует сказать, что такие листы помимо выполнения своей основной функции по теплозащите еще и великолепно снижают передачу нежелательных шумов.

А при чем тут сравнение с остальными видами утеплителя? Оно наглядно показывает, что пенопласт 50 мм значительно превосходит остальных конкурентов.

Происходит это из-за того, что данный материал практически весь состоит из воздуха. А воздух, как известно, обладает чрезвычайно низкой теплопроводностью, порядка 0,027Вт/мК.

Средние же значения этой величины для пенопласта колеблются в пределах 0,037Вт/мК-0,043Вт/мК. Если изобразить сравнение теплоизолирующих материалов в графическом виде, картинка будет выглядеть примерно вот так.

Наш продукт явно вне конкуренции.

Но какова теплопроводность пенопласта 50 мм в сравнении с остальными утеплителями в цифровом выражении? В табличном виде?

Ведь именно такой формат наиболее нагляден?

Если расставить приоритеты по коэффициенту теплопередачи, таблица будет смотреться так.

Но все это, так сказать, теория. В которую вдаваться обычному застройщику неинтересно. Его интересуют практические значения теплопроводности пенопласта (допустим, толщиной 50) в сравнении с другими изоляторами. Озвучиваем несколько цифр.

  • Лист пенопласта 50 мм (по СНиП РФ) по теплоизолирующим свойствам равнозначен кирпичной кладке толщиной 850 мм.
  • Такой же лист будет эквивалентен вдвое большему объему минеральной ваты.
  • Плита пенопласта 100 мм эквивалентна слою 123 мм вспененного пенополистирола.

Можно, конечно, еще порыться в таблицах и справочниках, произвести сравнение, сделать выводы. Но мы одним предложением выразим суть вопроса.

Если для сохранения определенного значения величины энергосбережения потребен слой дерева 45 см или кирпича 201 см, то пенопласта — всего лишь 12 см, благодаря его низкой теплопроводности.

Теплопроводность пенопласта — точные цифры

Пенопласт имеет следующие преимущества перед другими утеплительными материалами: экологичность, лёгкость, гигроскопичность, невысокая стоимость. Однако, главное достоинство — низкая теплопроводность пенопласта, которая делает его одним из наиболее распространенных теплоизолирующих материалов.

Общее описание

Пенопласт представляет собой плиты различной толщины, состоящие из вспененного материала – полимера. Теплопроводность пенопласта обеспечивается воздухом, из которого он состоит на 95-98%, т.е. газа, который не пропускает тепло.

Так как пенопласт в своей основе состоит из воздуха, то он имеет крайне низкую плотность, и, соответственно, малый удельный вес. Также пенопласт обладает очень хорошей звукоизоляцией (тонкие перегородки ячеек, заполненные воздухом – очень плохой проводник звуков).

В зависимости от исходного сырья (полимера) и процессов изготовления, можно производить пенопласт разной плотности, устойчивости к воздействию механических факторов, устойчивости к иным видам воздействия. В связи с вышеперечисленным, обусловливается выбор определенного вида пенопласта и его применение.

Характеристики теплопроводности пенопласта

Для того чтобы рассмотреть такую характеристику, как теплопроводность пенопласта, разберемся для начала, что из себя представляет в принципе теплопроводность материалов. Теплопроводностью называют количественную характеристику способности тела проводить тепло.

Это количество тепловой энергии (Ватт), которое любой материал способен провести через себя (метр), при определенной температуре (С) за определенное время. Обозначается — λ и выражается Вт/м•С.

Определим оптимальные размеры данного утеплителя исходя из его теплопроводных характеристик. На рынке стройматериалов большое множество различных утеплителей. Пенопласт, как мы уже знаем, обладает теплопроводностью очень низкой, но эта величина зависит от марки материала.

Например, пенопласт марки ПСБ-С 50 имеет плотность 50 кг/м3. Таким образом, его теплопроводность составляет 0,041 Вт/м•С (данные указаны при 20-30 С). Для пенопласта марки ПСБ-С 25 значение будет 0,041 Вт/м•С, а марки ПСБ-С 35 – 0,038 Вт/м•С. Приведенные величины коэффициентов теплопроводности указаны для пенопласта одинаковой толщины.

Наиболее заметна теплопроводность пенопласта при сопоставлении значений с другими теплоизоляционными материалами. К примеру, лист пенопласта 30-40 мм аналогичен объёму минваты в несколько раз большей, а толщина листа 150 мм заменяет 185 мм пенополистирола. Конечно, есть материалы, у которых коэффициент ниже. К таким относится и пеноплекс. 30 мм пеноплекса смогут заменить 40 мм пенопласта, при аналогичных условиях.

Какие листы выбрать?

Чтобы добиться наиболее эффективной теплоизоляции стены, необходимо правильно рассчитать толщину используемого утеплителя. Для примера рассчитаем, какой толщины нужен утеплитель для стены толщиной в один кирпич.

Сначала необходимо узнать общее теплосопротивление. Это постоянное значение, зависящее от климатических условий в определенной области страны. На юге России она составляет 2,8 кВт/м2, для полосы умеренного климата — 4,2 кВт/м2. Затем найдем теплосопротивление кирпичной кладки: R = p/k, где p – толщина стены, а k – коэффициент, указывающий, насколько сильно стена проводит тепло.

Имея начальные данные, мы можем узнать, какое теплосопротивление утеплителя необходимо использовать, применив формулу p=R*k. где R — общее теплосопротивление, а k — значение теплопроводности утеплителя.

Возьмем для примера пенопласт марки ПСБ-С 35, имеющий плотность 35 кг/м3 для стены, толщиной в один кирпич (0,25 м) в регионе средней полосы России. Общее теплосопротивление имеет значение 4,2 кВт/м2.

Для начала необходимо узнать теплосопротивление нашей стены (R1). Коэффициент для силикатного пустотного кирпича составляет 0,76 Вт/м•С (k1), толщина – 0,25 м (p1). Находим теплосопротивление:

R1 = p1 / k1 = 0,25 / 0,76 = 0,32 (кВт/м2).

Теперь находим теплосопротивление для утеплителя (R2):

R2 = R – R1 = 4.2 – 0,32 = 3,88 (кВт/м2)

Значение теплосопротивления пенопласта ПСБ-С 35 (k2) равен 0,038 Вт/м•С. Находим требуемую толщину пенопласта (p2):

p2 = R2*k2 = 3.88*0.038 = 0.15 м.

Вывод: при заданных условиях нам необходим пенопласт ПСБ-С 35 15 см.

Аналогичным способом можно сделать расчеты для любого материала, используемого в качестве утеплителя. Коэффициенты теплопроводности разных строительных материалов можно найти в специальной литературе или в сети Интернет.

Читать еще:  Как закрыть нишу в стене гипсокартоном?

Сравнения и расчеты теплопроводности

Сравнение эффективности популярных материалов-утеплителей.

В домах современного типа наибольшие потери тепла происходят через стены. Согласно СНиП 23-01-99 теплосопротивление стен жилых и производственных зданиий, в среднем по России, должно иметь значение не ниже R=3,0.

Теплосопротивление (R=м² * °С / Вт) стены зависит от материала, из которого она сделана.

Теплосопротивление материалов

Кладка из красного кирпича, толщина стены 0,25 м. (в один кирпич)0,36
Кладка из красного кирпича, толщина стены 0,38 м. (полтора кирпича)0,53
Кладка из силикатного кирпича, толщина стены 0,25 м. (в один кирпич)0,30
Кладка из силикатного кирпича, толщина стены 0,38 м. (полтора кирпича)0,44
Кладка из газо-пеноблоков, толщина стены 0,2 м.0,69
Кладка из газо-пеноблоков, толщина стены 0,3 м.0,81
Брус деревянный, 100 мм.0,71
Брус деревянный, 150 мм.1,07
Металл 0,5 – 1,0 мм. (ангары, павильоны, строит. вагончики, крыши домов)0,1

Из таблицы следует, что в соответствии с требованиями СНиП толщина стен жилого дома должна быть:

Исполнение данных условий в современной действительности абсолютно нереально. Вот почему использование утеплителей сегодня – вынужденная необходимость. Чем ниже коэффициент теплопроводности утеплителя, тем меньше его слой.

Коэффициент теплопроводности, ЭФФЕКТИВНЫЙ срок службы и толщина слоя

НаименованиеКоэффициент теплопроводностиСрок службыТолщина слоя
Пенополиуретан0,02550 лет5 см
Пенополистирол0,03515 лет8 см
Пенопласт0,0410 лет10 см
Минвата, базальтовое волокно0,0458 лет12 см
Стекловата0,055 лет15 см
Керамзит0,1540 лет35 см

Примеры расчета толщины утеплителей

ДЛЯ ТЕХ КТО СТРОИТ

Для того, чтобы добиться требуемого минимального значения теплосопротивления R=3,0 приведем четыре примера.

Стены дома из силикатного кирпича, толщина стены 0,38 м. R= 0,44.

Требуемое значение R — R_стены = 3,0 — 0,44 = 2,56. Теперь 2,56 умножаем на коэффициент теплопроводности ППУ = 0,025. Получаем:

2,56 х 0,025 = 6 см ППУ.

(пенополистирол — 9 см., пенопласт – 12 см., минвата и т.п. – 15 см., стекловата – 20 см., керамзит – 35-40 см. )

Все материалы кроме ППУ еще нужно крепить к поверхности. Керамзит нужно засыпать. ППУ наносится сразу в готовом виде.

Стены дома из деревянного бруса 150 мм. R=1,07.

1,93 х 0,025 = 5 см ППУ.

Стены дома из пено- газобетонного блока 40 см. R= 1,1

1,9 х 0.025 = 5 см ППУ.

Утепление крыши из листового металла (профнастил, металлочерепица) или ангаров. R=0,1

2,9 х 0,025 = 7 см ППУ.

Таким образом, сооружение из металла, утепленное ППУ слоем 7 см приобретает требуемое значение теплосопротивления R=3,0 и пригодно для круглогодичного проживания.

Теперь сравните это с тем, что мы видим вокруг. Практически нигде нет такого уровня теплоизоляции зданий, а ведь R=3,0 — это необходимый минимум!

Используя пенополиуретан в качестве утеплителя можно значительно снизить затраты на строительство за счет возведения стен меньшей толщины, менее массивного фундамента и т.д.

Легкий каркасный дом на столбчатом фундаменте, обшитый снаружи ЦСП или сайдингом и утепленный ППУ слоем 7 см в ДВА РАЗА ТЕПЛЕЕ коттеджа с толщиной стен в два кирпича. А стоимость этих домов несопоставима. Утепленный ППУ каркасный дом размером 12 х 9 обойдется в 800-900 тыс. руб., а утепленный дом такого же размера из кирпича или блоков будет стоить 2 — 2,5 млн. руб.

Если же такой дом построить своими руками (технология доступна каждому, было бы желание), то его стоимость не превысит 600 тыс. руб. Основной материал — брус 150х50 или 200х50. Вряд ли существует более выгодное предложение: за сравнительно небольшие деньги получить теплый дом для круглогодичного проживания, не опасаясь за качество утеплителя и ежегодно экономить на отоплении круглую сумму.

В таком теплом доме абсолютно не нужны громоздкие и дорогие водные системы отопления в виде электрических или газовых котлов, труб и радиаторов. Для обогрева 80 кв.м. достаточно несколько нагревателей с общей потребляемой мощностью 3 КВт. и бензиновый генератор на 5 КВт для аварийных случаев.

Если же средства позволяют построить кирпичный дом, то ППУ позволить существенно снизить первоначальные затраты на фундамент и кирпич, а затем существенно сократить расходы на отопление.

Для примера. В Самаре есть дом утепленный жестким ППУ слоем 15 см. Материал стен — силикатный кирпич. Общая площадь дома — 365 кв.м., 1-й этаж и мансарда.

Отопление — электрические инфракрасные нагреватели, котла и радиаторов нет.

Общая потребляемая мощность в зимний период, включая отопление и все бытовые приборы — 3 500 КВт/мес. или 4,9 КВт/час.

По ценам на электроэнергию в 2015 году расходы на дом в зимний период составляют не более 5 000 руб/мес.

В доме стабильная температура +23 — +24.

Какая теплопроводность у пенопласта? Свойства и характеристики

Эффективность – первое, что мы ищем, выбирая утеплитель. Разнообразные материалы изначально оцениваются именно по этому критерию, и только потом в дело вступают другие характеристики, особенность монтажа и стоимость. Сегодня мы рассмотрим теплопроводность пенопласта как самого доступного по цене и потому востребованного, а также сравним его с иными видами изоляции.

Теплопроводность – величина, обозначающая количество тепла (энергии), проходящего за час сквозь 1 м любого тела при определенной разнице температур с одной и другой его стороны. Она измеряется и рассчитывается для нескольких исходных условий эксплуатации:

  • При 25±5 °С – это стандартный показатель, закрепленный в ГОСТах и СНиП.
  • «А» – так обозначается сухой и нормальный режим влажности в помещениях.
  • «Б» – в эту категорию относят все прочие условия.

Собственно теплопроводность гранул пенопласта, спрессованных в легкую плиту, не так важна сама по себе, как в связке с толщиной утеплителя. Ведь основная цель – добиться оптимального уровня сопротивления всех слоев стены в соответствии с требованиями для конкретного региона. Для получения первоначальных цифр достаточно будет воспользоваться самой простой формулой: R = p÷k.

  • Сопротивление теплопередаче R можно найти в специальных таблицах СНиП 23-02-2003, к примеру, для Москвы принимают 3,16 м·°С/Вт. И если основная стена по своим характеристикам недотягивает до этого значения, разницу должен перекрыть именно утеплитель (минвата или тот же пенопласт).
  • Показатель р – обозначает искомую толщину изолирующего слоя, выраженную в метрах.
  • Коэффициент k – как раз и дает представление о проводимости тел, на которую мы ориентируемся при выборе.

Теплопроводность самого материала проверяют с помощью нагрева одной стороны листа и измерения количества энергии, переданной методом кондукции на противоположную поверхность в единицу времени.

Показатели для разных марок пенополистирола

Из приведенной упрощенной формулы можно заключить, что чем тоньше лист утеплителя, тем меньшей эффективностью он обладает. Но кроме обычных геометрических параметров на конечный результат оказывает влияние и плотность пенопласта, хоть и незначительно – всего в пределах 1-5 тысячных долей. Для сравнения возьмем две близкие по марке плиты:

  • ПСБ-С 25 проводит 0,039 Вт/м·°С.
  • ПСБ-С 35 при большей плотности – 0,037 Вт/м·°С.

А вот с изменением толщины разница становится куда более заметной. К примеру, у самых тонких листов в 40 мм при плотности 25 кг/м 3 показатель теплопроводности может составлять 0,136 Вт/м·°С, а 100 мм того же пенополистирола пропускают всего 0,035 Вт/м·°С.

Зависимость нелинейная, что связано с особенностью кондуктивной передачи. Но поскольку коэффициент высчитывается в единицу времени, а плотность материала остается неизменной, разница температур с внешней поверхностью при «продвижении» энергии сквозь плиту становится все меньше. И если толщина пенополистирола оказывается значительной, тепло просто не успевает передаться обратной стороне, что, в общем-то, и требуется от хорошей изоляции.

Сравнение с другими материалами

Средняя теплопроводность ПСБ лежит в пределах 0,037-0,043 Вт/м·°С, на него и будем ориентироваться. Здесь пенопласт в сравнении с минватой из базальтовых волокон, кажется, выигрывает незначительно – у нее примерно те же показатели. Правда, при вдвое большей толщине (95-100 мм против 50 мм у полистирола). Также принято сопоставлять проводимость утеплителей с различными стройматериалами, необходимыми для возведения стен. Хотя это и не слишком корректно, но весьма наглядно:

1. Красный керамический кирпич имеет коэффициент теплопередачи 0,7 Вт/м·°С (в 16-19 раз больше, чем у пенопласта). Проще говоря, чтобы заменить 50 мм утеплителя понадобится кладка толщиной около 80-85 см. Силикатного и вовсе нужно не меньше метра.

2. Массив дерева в сравнении с кирпичом в этом плане получше – здесь всего 0,12 Вт/м·°С, то есть втрое выше, чем у пенополистирола. В зависимости от качества леса и способа возведения стен, эквивалентом ПСБ толщиной 5 см может стать сруб шириной до 23 см.

Куда логичнее сравнивать стиролы не с минватой, кирпичом или деревом, а рассматривать более близкие материалы – пенопласт и Пеноплекс. Оба они относятся к вспененным полистиролам и даже изготавливаются из одних и тех же гранул. Вот только разница в технологии их «склеивания» дает неожиданные результаты. Причина в том, что шарики стирола для производства Пеноплекса с введением порообразователей одновременно обрабатываются давлением и высокой температурой. В итоге пластичная масса приобретает большую однородность и прочность, а пузырьки воздуха равномерно распределяются в теле плиты. Пенопласт же просто обдается паром в форме, как поп-корн, поэтому связи между вспученными гранулами оказываются слабее.

Как следствие, теплопроводность Пеноплекса – экструдированного «родственника» ПСБ – тоже заметно улучшается. Она соответствует показателям 0,028-0,034 Вт/м·°С, то есть 30 мм хватит, чтобы заменить 40 мм пенопласта. Однако сложность производства увеличивает и стоимость ЭППС, так что на экономию рассчитывать не стоит. Кстати, здесь есть один любопытный нюанс: обычно экструдированный пенополистирол немного теряет в эффективности при увеличении плотности. Но при введении в состав Пеноплекса графита эта зависимость практически исчезает.

Впрочем, если вопрос высокой прочности на повестке дня не стоит, и вам нужен просто хороший утеплитель, проще и дешевле действительно купить пенопласт. В сравнении с такими материалами, как минвата, дерево и керамический кирпич, он безусловно хорош. Главное – не использовать его на пожароопасных объектах и всегда стараться выполнять теплоизоляцию снаружи зданий.

Цены на листы пенопласта 1000х1000 мм (рубли):

Теплопроводность пенопласта

Основной характеристикой, благодаря которой пенополистирол получил широкое признание в качестве материала для утепления №1, является сверхнизкая теплопроводность пенопласта. Относительно небольшая прочность материала с лихвой компенсируется такими преимуществами, как стойкость к воздействию большинства агрессивных соединений, небольшой вес, нетоксичность и безопасность при работе. Хорошие теплоизолирующие свойства пенопласта дают возможность обустроить утепление дома по относительно небольшой цене, при этом долговечность такого утепления рассчитана на срок не менее 25 лет службы.

  1. Что нужно знать о теплопроводности пенопласта
  2. От чего зависит теплопроводность пенопласта
  3. Влияние плотности и влажности окружающей среды
  4. Влияние химического состава на теплопроводность
  5. Заключение

Что нужно знать о теплопроводности пенопласта

Способность материала к теплопередаче, проводить или задерживать тепловые потоки принято оценивать коэффициентом теплопроводности. Если посмотреть на его размерность – Вт/м∙С о , то становится понятным, что это величина удельная, то есть определенная для следующих условий:

  • Отсутствие влаги на поверхности плиты, то есть коэффициент теплопроводности пенопласта из справочника — это величина, определенная в идеально сухих условиях, которых в природе практически не существует, разве что в пустыне или в Антарктиде;
  • Значение коэффициента теплопроводности приведено к толщине пенопласта в 1 метр, что очень удобно для теории, но как-то не впечатляет для практических расчетов;
  • Результаты измерения теплопроводности и теплопередачи выполнены для нормальных условий при температуре 20 о С.

Согласно упрощенной методике, при расчетах термического сопротивления слоя пенопластового утеплителя нужно умножить толщину материала на коэффициент теплопроводности, затем умножить или разделить на несколько коэффициентов, используемых для того, чтобы учесть реальные условия работы теплоизоляции. Например, сильное обводнение материала, или наличие мостиков холода, или способ монтажа на стены здания.

Насколько теплопроводность пенопласта отличается от других материалов, можно увидеть в приведенной ниже сравнительной таблице.

На самом деле не все так просто. Для определения значения теплопроводности можно составить своими руками или использовать готовую программу для расчета параметров утепления. Для небольшого объекта обычно так и поступают. Частник или самозастройщик может вообще не интересоваться теплопроводностью стен, а уложить утепление из пенопластового материала с запасом в 50 мм, что будет вполне достаточно для самых суровых зим.

Большие строительные компании, выполняющие утепление стен на площади десятков тысяч квадратов, предпочитают поступать более прагматично. Выполненный расчет толщины утепления используется для составления сметы, а реальные значения теплопроводности получают на натурном объекте. Для этого наклеивают на участок стены несколько различных по толщине листов пенопласта и измеряют реальное термосопротивление утеплителя. В результате удается рассчитать оптимальную толщину пенопласта с точностью до нескольких миллиметров, вместо приблизительных 100 мм утеплителя можно уложить точное значение 80 мм и сэкономить немалую сумму средств.

Насколько выгодно использование пенопласта в сравнении с типовыми материалами, можно оценить из приведенной ниже диаграммы.

От чего зависит теплопроводность пенопласта

Величина теплопроводности пенопласта, как и любого другого материала, зависит от трех основных составляющих:

  • температуры воздуха;
  • плотности пенопластовой плиты;
  • уровня влажности среды, в которой используется утеплитель.

    Как видно из схемы, при низких температурах воздуха градиент по толщине стенки линейно меняется от отрицательных значений на наружной поверхности облицовки до +20 о С внутри помещения. Необходимо так подобрать теплопроводность и толщину материала, чтобы точка росы или, другими словами, температура, при которой начинают конденсироваться пары воды, находилась внутри массива пенопласта.

    Влияние плотности и влажности окружающей среды

    Несмотря на все заверения производителей, пенопласт способен поглощать и проводить водяные пары, для сравнения, величина паропроницаемости для пенопластового листа всего лишь на 20% ниже проницаемости древесины. Естественно, наличие водяных паров в толще пенопласта существенным образом влияет на его теплопроводность. Найти зависимость в справочниках практически невозможно, поэтому при расчетах делают эмпирическую поправку на теплопроводность, исходя из толщины теплоизоляции.

    Пенопласт способен поглощать в поверхностных слоях до 3% воды. Глубина поглощения составляет 2 мм, поэтому при определении теплопроводности материала эти миллиметры выбрасывают из эффективной толщины теплоизоляции. Поэтому лист пенопласта толщиной в 10 мм будет в сравнении с листом в 50 мм иметь теплопроводность не в 5 раз больше, а в 7 крат. При значительной толщине пенопласта, более 80 мм, теплосопротивление увеличивается значительно быстрее, чем его толщина.

    Вторым фактором, влияющим на теплопроводность, является плотность материала. При одинаковой толщине материал разных марок может иметь плотность в два раза больше. Принято считать, что 98% структуры утеплителя составляет высушенный воздух. С увеличением вдвое количества полистирола в плите, естественно, теплопроводность также увеличивается, примерно на 3%.

    Но дело даже не в количестве полистирола, меняется размер шариков и ячеек, из которых состоит пенопласт, образуются локальные участки с очень высокой теплопроводностью, или мостики холода. Особенно это касается трещин и стыков, любых зон деформации и установки креплений. Поэтому при установке зонтичных дюбелей количество креплений рекомендуют ограничивать 3 точками.

    Влияние химического состава на теплопроводность

    Мало кто обращает внимание на особые свойства пенопласта. Сегодня наиболее серьезной проблемой пенопласта считается его способность к воспламенению и выделению токсичных продуктов сгорания. СНиП и ГОСТ требуют, чтобы пенопласт, используемый для утепления жилых зданий, имел время самозатухания не более 4 с. Для этого используются соли ряда цветных металлов, таких как хром, никель, железо, включение в состав веществ, выделяющих углекислый газ при нагревании.

    В результате на практике пенопласт с индексом « С » — самозатухающий имеет теплопроводность значительно выше, чем обычные марки пенополистирола. Практика использования пенополистирола для утепления в Евросоюзе показала, что более выгодным и дешевым является нанесение на внешнюю поверхность немодифицированного пенопласта специального покрытия из газообразующих агентов. Такое решение позволяет сохранить теплосберегающие свойства и экологичность материала, одновременно значительно повысить пожаробезопасность.

    Заключение

    Теплопроводность пенопласта практически не меняется с течением времени, как, например, у минеральной ваты или газосиликатных блоков. Единственной проблемой является деградация пенополистирола под действием солнечных лучей и рассеянного ультрафиолета. При длительном облучении материал становится рыхлым, покрывается трещинами и легко наполняется конденсатом, поэтому для сохранения первоначального значения теплопроводности необходимо закрывать утеплитель облицовкой.

    Теплопроводность пенопласта от 50 мм до 150 мм — считаем теплоизоляцию

    Пенополистирольные плиты, именуемые в просторечье пенопласт – это изоляционный материал, как правило, белого цвета. Изготавливают его из полистирола термального вспучивания. На вид пенопласт представлен в виде небольших влагостойких гранул, в процессе плавления при высокой температуре выплавляется в одно целое, плиту. Размеры частей гранул считаются от 5 до 15 мм. Выдающаяся теплопроводность пенопласта толщиной 150 мм, достигается за счет уникальной структуры – гранул.

    У каждой гранулы есть огромное количество тонкостенных микро ячеек, которые в свою очередь во много раз повышают площадь соприкосновения с воздухом. Можно с уверенность сказать, что пенопласт практически весь состоит из атмосферного воздуха, приблизительно на 98%, в свою очередь этот факт являет собой их предназначение – теплоизоляция зданий как снаружи, так и внутри.

    Всем известно, еще из курсов физики, атмосферный воздух, является основным изолятором тепла во всех теплоизоляционных материалах, находится в обычном и разреженном состоянии, в толще материала. Тепло-сбережение, основное качество пенопласта.

    Как было сказано раньше, пенопласт практически на 100% состоит из воздуха, а это в свою очередь определяет высокую способность пенопласта сохранять тепло. А связанно это с тем, что у воздуха самая низкая теплопроводность. Если посмотреть на цифры, то мы увидим, что теплопроводность пенопласта выражена в промежутке значений от 0,037Вт/мК до 0,043Вт/мК. Это можно сопоставить с теплопроводность воздуха — 0,027Вт/мК.

    В то время как теплопроводность популярных материалов, таких как дерево (0,12Вт/мК), красный кирпич (0,7Вт/мК), керамзитная глина (0,12 Вт/мК) и других, используемых для строительства, намного выше.

    Высокий уровень энергосбережения пенопласт обеспечивает за счет низкой теплопроводности. Например, если построить стену из кирпича толщиной 201 см или воспользоваться древесным материалом толщиной 45 см, то для пенопласта толщина составит всего на всего 12 см для определенной величины энергосбережения.

    Поэтому самым эффективным материалом из немногих для теплоизоляции наружных и внутренних стен здания принято считать пенопласт. Затраты на отопление и охлаждение жилых помещений значительно сокращаются благодаря применению пенопласта в строительстве.

    Превосходные качества пенополистирольных плит нашли свое применение и в других видах защиты, например: пенопласт, так же служит для защиты от промерзания подземных и наружных коммуникаций, за счет чего их эксплуатационный срок увеличивается в разы. Пенопласт применяют и в промышленном оборудовании (холодильные машины, холодильные камеры) и в складских помещениях.

    Размеры листов

    Изготовление пенополистирольных плит, осуществляется по нормам ГОСТ. При производстве пенопласта регулируется как состав, так и размеры листов. Стандартная длина листа колеблется от 100 см до 200 см. Ширина должна быть равна 100 см, а толщина от 2 см до 5 см. Теплопроводность пенопласта 50 мм – относительно высока, благодаря небольшой толщине и характеристикам материала, он является наиболее ходовым из всех.

    А что же покупать?

    На рынке строительных материалов представлен огромный выбор пенополистирольных плит. Высокая теплопроводность плит утеплителей зависит от их вида. Например: лист пенопласта ПСБ-С 15 обладает до 15 кг/м3 плотностью и 2 см толщиной. Для листа от 2-х до 50 см плотность составляет не более 35 кг/м3. При сравнении пенопласта с другими подобными материалами можно легко проследить зависимость теплопроводности пенополистирольных плит от его толщины.

    Так, например: теплопроводность пенопласта 50 мм, больше в два раза, чем у минеральной ваты такого же объема, в таком случае теплопроводность пенопласта, толщина 150 мм, вообще в 6 раз превысит эти показатели. Базальтовая вата, тоже очень сильно проигрывает пенопласту.

    Для того чтобы применить один из способов изоляции, необходимо верно выбрать габариты материала. По следующему алгоритму можно выполнить расчет:

    • Необходимо уточнить общее тепло-сопротивление. Эта величина зависит от региона, в котором необходимо выполнить расчет, а именно от его климата.
    • Для вычисления тепло-сопротивления стены можно воспользоваться формулой R=p/k, где ее толщина равна значению р, а k-коэффициент теплопроводности пенопласта.
    • Из постоянных показателей можно сделать вывод, какое сопротивление должно быть у изоляции.
    • Нужную величину можно вычислить по формуле р=R*k, найти значение R можно исходя из предыдущего шага и коэффициента теплопроводности.

    Марки пенопласта

    Если Вас заинтересовал вопрос, какой лучше всего марки приобрести пенопласт, и какая у него теплопроводность, то мы ответим вам на него. Ниже приведены самые популярные марки продукции, а также отображены величины плотности и коэффициент теплопроводности пенопласта.

    • ПCБ-C15. С теплопроводностью 0,042 Вт/мK, а плотность равна 11-15 кг/м3
    • ПCБ-C25. С теплопроводностью 0,039 Вт/мK, а плотность равна 15-25 кг/м3
    • ПCБ-С35. С теплопроводностью 0,037 Вт/мK, а плотность равна 25-35кг/м3

    Завершает наш список пенопласт ПCБ-C5, теплопроводность которого составляет 0,04 Вт/мК, а плотность равна 35-50 кг/м3. Проведя анализ плотности и теплопроводности можно с уверенностью сказать, что плотность существенно не влияет на основное качество пенопласта, тепло-сбережение.

    Еще по этой теме на нашем сайте:

      Экструдированный или экструзионный пенополистирол — технические характеристики утеплителя

        Экструдированный пенополистирол, являясь высокотехнологичным материалом, по праву может называться уникальным. Потому он и получил такое широкое распространение в строительстве, производстве сантехники и еще ряде областей.

      Пеноплекс или пенопласт — что лучше для утепления стен дома снаружи

        Известный всем пенопласт, когда-то конкурировавший исключительно со стекловатой, сегодня сам имеет массу производных материалов, которые, кстати, частенько уступают место другим современным видам утеплителя. К слову.

      Коэффициент теплопроводности строительных материалов — таблица и цифры

        Первый вопрос, который возникает, у того, кто решил построить собственный дом, – какой использовать для этого материал. От этого зависит выбор фундамента, в свою очередь.

      Теплопроводность утеплителей в таблице — сравнение утеплителей по теплопроводности

        Мы живем далеко не в самой жаркой стране на Земле, а значит, свои жилища вынуждены обогревать, по крайней мере, большую часть года. Этим и объясняется.

    Добавить комментарий Отменить ответ

    Вы можете подписаться на новые публикации по электронной почте.

    Теплопроводность строительных материалов: таблица

    Процесс строительства любого жилого или промышленного объекта начинается с разработки проекта. В нем необходимо предусмотреть взаимное расположение всех элементов конструкции, а также учесть качество применяемых материалов. Все они обладают разными физическими характеристиками. В каждом случае производители предусматривают коэффициенты теплопроводности строительных материалов.

    Благодаря знанию данного параметра быстрее проводится разработка и постройка зданий, обеспечивающих экономию ресурсов. Внутри помещений образуется приятный микроклимат не только зимой, но и летом. Часто в таком случае помогает таблица теплопроводности материалов. В нее входят наиболее популярные строительные компоненты.

    Определение базового понятия

    Теплопроводность строительных материалов характеризуется возможностью перераспределения энергии от более теплых частиц к более прохладным участкам. Перераспределение будет происходить до тех пор, пока не сформируется тепловой баланс. Фактически на всех участках конструкции будет единая температура.

    Явление имеет актуальность для всех ограждающих элементов домостроения, которыми являются:

    • наружные стены;
    • внутренние перегородки;
    • пол;
    • крыша;
    • потолок и другие перекрытия.

    Теплопроводность утеплителей определяется временем, в течение которого за счет теплопередачи температурные условия внутри здания станут соответствовать условиям снаружи. Оптимальным является наиболее продолжительный процесс, растянутый на длительный временной интервал. В таком случае за счет применяемых материалов и фактур удастся оптимизировать расходы на эксплуатацию.

    Сравнение показателей теплосбережения разных стройматериалов

    Определяя, например, теплопроводность пенополистирола или каких-либо экструдированных его разновидностей, необходимо знать, что данный параметр позволяет определять какое количество тепловой энергии за установленную единицу времени проходит сквозь единицу поверхности. Применяется исчисление Вт/(м*градус). Соответственно, чем численное значение больше, тем эффективнее проводится тепло через указанное вещество, а все процессы, связанные с теплообменом станут проходить быстрее.

    Создавая проект дома, бани, гаража или иной бытовой постройки, нужно самостоятельно учитывать данный фактор. При этом подбирать утеплители необходимо с минимальными значениями проводимости тепла.

    Некоторые примеры практического применения

    Практическая ценность такого знания заключается в том, чтобы сравнивать разные материалы всевозможной толщины с другими, определяя оптимальные параметры. Так теплопроводность пенопласта 50 мм в сравнении с кирпичной двухрядной кладкой будет примерно равной. Это значит, для того чтобы создать стену из кирпича сопоставимую с 10 см пенопласта, необходимо выкладывать ее в 4 кирпича, что является весьма затратным и нерациональным по использованию ресурсов.

    Коэффициент теплопроводности кирпичей

    Для сухой сосны коэффициент передачи тепла равен 0,17 Вт(м*град), а для пенобетона значение – 0,18, что является весьма близким. В таком случае оба вещества способны хранить тепло с идентичной способностью. Необходимо учитывать не только фактуру сырья, из которого изготовлена Важно! термическая отделка, но и его форму.

    Примером служит разница пустотелого и полнотелого кирпича. В первом случае коэффициент составит 0,55, а во втором – 0,80 Вт(м*град). Наличие воздушной прослойки внутри блоков позволило почти в полтора раза повысить эффективность термоизоляции.

    На практике опытные строители с успехом комбинируют различные материалы, используя их позитивные качества. Когда дом выложен из прочного кирпича, то для его утепления можно задействовать пенопласт. Его применяют снаружи и внутри здания, создавая многослойную конструкцию. Строители любят монтировать пенополистирол, так как он имеет один из минимальных коэффициентов, составляющий 0,03 Вт(м*град).

    Взамен дорогим и долго строящимся домам из кирпичной кладки, приходят более прогрессивные технологии. Даже еще недавно популярные монолитные либо панельно-каркасные постройки уходят в прошлое. Их место занимают здания из ячеистого бетона. Он обладает показателями, сопоставимыми с характеристиками древесины. Стены не подвергаются сквозному промерзанию даже во время лютых морозов.

    Шкала толщины стройматериалов при идентичных коэффициентах

    Актуальный принцип применяется во время возведения каркасных легких домов, также его задействуют при возведении коттеджей, крупных складов, загородных супер- и мегамаркетов, всевозможных промышленных построек. При соблюдении технологии возведенное подобным образом здание из современных строительных материалов с минимальным коэффициентом проводимости можно эксплуатировать в различных климатических условиях.

    Для щитовых конструкций формируют заготовки из листов OSB, между которыми крепится минвата или экструдированный пенополистирол. Такие стены вполне справляются с функцией по созданию комфортного микроклимата внутри помещения.

    ВИДЕО: Как сделать теплотехнический расчет дома

    Что может повлиять на изменение характеристик

    На коэффициент теплопроводности могут оказывать влияние разные технологические факторы:

    Пористость

    Образуемые технологические пустоты внутри базового вещества не допускают однородности фактуры. В процессе прохода тепловой струи часть энергии передается в газовые пустоты. Так как установлено, что сухой воздух имеет коэффициент 0,02 Вт(м*град), то чем больше в фактуре пустот, тем будет больше понижаться коэффициент передачи тепловой энергии.

    Размеры пор

    Наибольшей эффективностью обладают малые замкнутые поры. За счет них существенно снижается скорость теплового потока. Для случаев с крупными порами необходимо добавлять явление перемещение тепла при помощи конвекции.

    Плотность материала

    Высокое значение данного показателя характеризуется достаточно близким расположением частиц внутри вещества. Таким образом между его составляющими тепло перемещается достаточно быстро. Для определения зависимости между плотностью и теплопроводностью используются специальные справочники.

    Уровень влажности

    Необходимо учитывать, что вода в чистом виде обладает теплопроводностью со значением 0,6 Вт/(м*град). Когда утеплитель промокает, то это значит, что на место воздушных ячеек проникает влага. Так как воздух имеет коэффициент 0,02, а вода 0,6, то структура теряет изоляционные свойства пропорционально степени увлажнения. Часто эта зависимость не линейная, а экспоненциальная.

    Температура окружающей среды

    Также оказывает влияние на итоговое значение. Для расчета берется формула λ=λо*(1+b*t), в которой под λо подразумевается коэффициент теплопроводности при нулевой температуре, b – определенная справочная величина термокоэффициента, а t – действующее значение в градусах Цельсия.

    Имеет значение и то, где установлен утеплитель, чтобы увеличить или уменьшить показатели паропроницаемости и проводимости тепла

    Чтобы обеспечить правильные параметры по теплоизоляции для здания, необходимо соблюдать действующие нормативные акты, к которым относятся следующие:

    • СП 23-101-2004 – используются в процессе создания проектов тепловой защиты;
    • СНиП23-01-99 – устанавливают параметры строительной климатологии;
    • СНиП 23-02-2003 – необходимы при актуальных расчетах термической защиты зданий.

    Таблица теплопроводности строительных материалов

    ВИДЕО: Из чего стоит дом построить

    • Как крепить пеноплекс к стене
    • В чем разница между пароизоляцией и гидроизоляцией
    • Расход битумной мастики на 1 м2 гидроизоляции
    • Какой рубероид лучше для крыши

    Свойства пенопласта

    Пенополистирол пенопласт практически водонепроницаем. Количество вбираемой воды по отношению к весовому объему пенополистирола за год колеблется в пределах 1,5‑3,5%. С другой стороны, воздухопроницаемость пенополистирола в значительной степени превышает его водопроницаемость. То есть стена «дышит». Температура окружающей среды не оказывает отрицательного влияния на физические и химические свойства пенополистирола. При температуре до 90°С пенополистирол не меняет своих свойств даже в течение длительного промежутка времени. Атмосферному влиянию внешние стены из пенополистирольных блоков практически не подвержены.

    Цели изоляции на основе пенополистирола (пенопласта)

    • сокращение расходов на монтажные и строительные работы;
    • экономия тепловой энергии на отопление;
    • сокращение стоимости отопительного оборудования (за счет уменьшения его количества);
    • увеличение полезной площади здания за счет уменьшения конструктивной толщины стен;
    • повышение температурного комфорта помещения;
    • повышение экологической безопасности строительного сооружения.

    Пенополистирол (пенопласт) обладает высокой теплоизоляционной способностью, намного превосходит известные традиционные строительные материалы, способен обеспечить долгую жизнь любого здания, независимо от климатических условий.

    Необходимость и преимущества применения пенополистирола (пенопласта) в строительстве

    Существует мнение, что пенопласт является наиболее оптимальным в строительстве материалом. Учитывая все физико-химические свойства пенопласта и собственно самого пенополистирола можно выделить две группы характеристик: характеристики безопасности и эксплуатационно-технические. Рассмотрим эксплуатационно-технические свойства пенопласта:

    • Одно из основных свойств пенопласта — это довольно низкий коэффициент теплопроводности, что позволяет широко применять его в различных строительных работах. За счет равномерно распределенного воздуха внутри полимера, а, как известно, воздух плохо проводит тепло, плиты из пенополистирола хорошо подходят для выполнения основной и дополнительной защиты сооружений и помещений от промерзания стен при любых погодных условиях.
    • Также пенопласт обладает звукоизоляционным и защитным от ветра свойствами, это позволяет применять его при необходимости.
    • Следующее свойство — это долговечность. Соблюдая все основные условия монтажа и эксплуатации, пенополистирол не изменит начальные свойства и прослужит не один десяток лет. Пенопласт является химически нейтральным строительным материалом.
    • Абсолютная влагостойкость пенополистироловых плит позволяет укладывать их в тех местах, где наиболее вероятно скопление или протекание жидкости. При этом пенопласт не меняет своей первоначальной формы, не происходит смещения и набухания материала.
    • Простота в монтаже, крепеже и резке пенополистироловых листов и блоков значительно экономит средства и время застройщиков. Так же следует учесть тот факт, что, работая с этим строительным материалом, нет необходимости в использовании специальной защитной одежды, оборудования и приспособлений для рабочих.
    • Пенопласт устойчив к различным видам разрушающих действий воды, спирта, слабых кислот и щелочей, тем самым, продлевая срок службы плит и листов из пенополистирола.

    Характеристики безопасности пенополистирола:

    • Основным показателем безопасности пенополистирола является его пожароустойчивость. При взаимодействии пенопласта с огнем, оплавленные слои не дают возможности повторного возгорания и тления материала, что свойственно для привычной для нас древесины.
    • Экологичность материала. Исходным продуктом для изготовления пенопласта является стирол, состоящий из водорода и углерода. Поэтому при возгорании пенополистирола выделяются те же вещества, что и при горении древесины или угля. На сегодняшний день пенопласт является наиболее проверенным и чистым материалом, его используют в изготовлении детских игрушек, для хранения и транспортировки продуктов питания.
    • Температурная выносливость. На данный момент не установлен минимальный температурный порог, при котором применение пенополистирола противопоказано. Максимальная температура приблизительно ограничена значением в +100°С. но необходимо учесть, что такие температурные значения в строительстве не встречаются, и поэтому этой величиной можно пренебречь.
    • Устойчивость к микробиологическим факторам. Плиты из пенопласта не содержат в себе питательных веществ для жизни микроорганизмов, поэтому не возникает развитие и рост различных грибов и бактерий. Данное свойство гарантирует чистоту в работе и эксплуатации пенополистирола.

    С введением новых строительных нормативов по теплозащите зданий в России возникает необходимость перехода строительной отрасли на новые принципы решения задач. При этом архитекторы и проектировщики все чаще обращаются к новым материалам и конструкциям, способным эффективно обеспечивать заданные требования. Пенополистирол — один из этих материалов. Теплоизоляционные свойства пенополистирола (пенопласта) в сравнении с другими материалами, показаны в следующей таблице и говорят сами за себя. По действующим российским строительным нормам толщина стен, одинаково препятствующих теплопотерям в здании, должна быть примерно:

    • Железобетон — 4,20 м
    • Кирпич — 2,10 м
    • Керамзитобетон — 0,90 м
    • Дерево — 0,45 м
    • Минеральная вата — 0,18 м
    • Пенополистирол — 0,12 м

    Таблица теплопроводности наиболее часто применяемых строительных материлов

    Физико-технические характеристики листового пенополистирола (ПСБ-С)

    Расчет теплоизоляции пенопластом

    Например для обеспечения минимальной теплоизоляции промышленных помещений при отоплении 2000°С/сутки толщина пенополистирола составляет: для крыши — 80 мм, для стен — 60 мм.

    Безопасность

    Материал производится, используется и утилизируется без ущерба для окружающей среды и здоровья людей. Пенополистирол — это на 100% многократно используемый, наиболее чистый и безопасный теплоизоляционный материал. Он используется и в качестве упаковочного материала для продуктов питания, в игрушках и т.п.

    Хорошее тепловое сопротивление

    Пенополистирол на 98% состоит из неподвижного воздуха, заключенного в его закрытой ячеистой структуре. Статический воздух, как известно, является самым лучшим природным теплоизолятором. Содержание полистиролового пластика в материале составляет всего 2% — такая комбинация и обеспечивает плитам ПСБ-С замечательные теплоизолирующие свойства. Причем теплоизолирующие свойства пенополистирол сохраняет как и во влажных условиях, так и при низких температурах.

    Звуконепроницаемость и ветрозащитное действие

    При утеплении с помощью пенополистирольных плит ПСБ-С не нужна дополнительная ветрозащита. Кроме того, улучшается звукоизоляция конструкций.

    Влагостойкость

    Теплоизоляционные плиты ПСБ-С не гигроскопичны. Влагопоглощаемость пенополистирола существенно ниже, чем у минеральной ваты. Даже при длительном погружении в воду теплоизоляционные плиты ПСБ-С впитывают всего несколько процентов воды от своего объемного веса, это позволяет использовать их для утепления фундаментов при прямом контакте утеплителя с грунтом.

    Высокая стойкость к нагрузкам

    Кратковременная и долговременная стойкость к нагрузкам является одним из важнейших свойств пенополистирола. И она значительно выше, чем у минеральной ваты.

    Сохранение стабильных размеров

    Утеплитель ПСБ-С остается стабильным в строительной конструкции, причем в течение всего срока эксплуатации строения: не садится, не уменьшается в размерах и не сдвигается в конструкции.

    Долговечность

    В течение всего срока жизни строения качество свойств утеплителя ПСБ-С не ухудшается. Минимальная влагопоглощаемость материала обеспечивает сохранение стойкости к нагрузкам и теплоизолирующую способность во влажных условиях. Пенополистирол не образует на своей поверхности питательной среды для роста микроорганизмов, не гниет, не плесневеет и не преет, является химически стойким.

    Удобство использования

    Благодаря малому весу пенополистирольные плиты ПСБ-С удобны и легки в обращении, их легко можно нарезать на куски нужных размеров с помощью обычных инструментов. Для строителя крайне важным является тот факт, что используя в работе пенополистирол, не требуется применять средств защиты: он не ядовит, не имеет запаха, не выделяет пыль при обработке, не вызывает раздражения кожи.

    Трудновоспламеняемость

    Все теплоизоляционные материалы ПСБ-С изготовлены из сырья, содержащего огнестойкий материал — антипирен, и соответствуют требованиям ГОСТа 15588-86. Температура эксплуатации пенополистирола составляет от -200°С до +85°С.

    голоса
    Рейтинг статьи
  • Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector